Projected-gradient algorithms for generalized equilibrium seeking in Aggregative Games are preconditioned Forward-Backward methods
نویسندگان
چکیده
We show that projected-gradient methods for the distributed computation of generalized Nash equilibria in aggregative games are preconditioned forward-backward splitting methods applied to the KKT operator of the game. Specifically, we adopt the preconditioned forward-backward design, recently conceived by Yi and Pavel in the manuscript “A distributed primal-dual algorithm for computation of generalized Nash equilibria via operator splitting methods” for generalized Nash equilibrium seeking in aggregative games. Consequently, we notice that two projected-gradient methods recently proposed in the literature are preconditioned forward-backward methods. More generally, we provide a unifying operator-theoretic ground to design projected-gradient methods for generalized equilibrium seeking in aggregative games.
منابع مشابه
A Douglas-Rachford splitting for semi-decentralized generalized Nash equilibrium seeking in Monotone Aggregative Games
We address the generalized Nash equilibrium seeking problem for noncooperative agents playing non-strictly monotone aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized Nash equilibria of the game as the zeros of a monotone setvalued operator. Then, we massage the Douglas–Rachford splitting to solve the monotone inclusion problem and ...
متن کاملContinuous-time integral dynamics for Aggregative Game equilibrium seeking
In this paper, we consider continuous-time semidecentralized dynamics for the equilibrium computation in a class of aggregative games. Specifically, we propose a scheme where decentralized projected-gradient dynamics are driven by an integral control law. To prove global exponential convergence of the proposed dynamics to an aggregative equilibrium, we adopt a quadratic Lyapunov function argume...
متن کاملILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملModern Building Materials, Structures and Techniques
The family of iterative methods for static and natural vibration analysis, based on preconditioned conjugate gradient (PCG) method with aggregation multilevel preconditioning, is considered. Both: the element-by-element procedure for assembling of stiffness matrix and sparse direct solver for it factoring and fast forward − backward substitutions ensure the high stability of methods against ill...
متن کاملSubmodularity and the evolution of Walrasian behavior
Vega-Redondo (1997) showed that imitation leads to the Walrasian outcome in Cournot Oligopoly. We generalize his result to aggregative quasi-submodular games. Examples are the Cournot Oligopoly, Bertrand games with differentiated complementary products, CommonPool Resource games, Rent-Seeking games and generalized Nash-Demand games. JEL-Classifications: C72, D21, D43, L13.
متن کامل